How to get started with VB and MIDI

Hi!
My name is Gaute
| will guide you through
your first steps of using
Visual Basic to program
MIDI using the

The graphic in this presentation will look best on a VGA (640x480) screen

To fully follow me in this presentation
it would be best if you where familiar with
MIDI| messages and
the technique of calling DLL’s from VB.

If not
Read some VB documentation,
look for declare in the VB on-line help
and read about MIDI implementation in your
ROLAND owners manual.

First we will talk a little theory
and then | will guide you through a simple
application to demonstrate some of the
commands and techniques.

MMSYSTEM.DLL is the low-level entry to the
Multimedia for Windows.
It contains routines for playing video, music
reading the joystick etc..
| will focus on the routines for MIDI only.

Since the routines are low-level you may find them
cumbersome to use
but they give us very good control.

Overview of MMSYSTEM.DLL

Overview of MMSYSTEM.DLL

MIDI IN

MIDI OUT

Overview of MMSYSTEM.DLL

IDNT T

MIDI IN

mMidiOutGetNumDevs

midiOutGetDevCaps

midiOutOpen i :

ok =i Both parts have routines to get;

midiOutGetErrorText number of installed devices
and capabilities of those devices

and

MIDI OUT Opening and closing

midilnGetNumDevs of the devices.

midilnGetDevCaps

midilnOpen

midilnClose

midilnGetErrorText

Overview of MMSYSTEM.DLL

MIDI IN
have special routines for
recording

Overview of MMSYSTEM.DLL

LONG Messages SHORT Messages

midilnPrepareHeader
midilnUnprepareHeader MM_MIM_DATA
(Windows Message)

midilnAddBuffer

midiOutPrepareHeade
midiOutUnprepareHead

midiOutLongMsg midiOutShortMsg

Overview of MMSYSTEM.DLL

LONG Messages

midilnPrepareHeader
midilnUnprepareHeader

midilnAddBuffer

midiOutPrepareHeader
midiOutUnprepareHeader

midiOutLongMsg

— C O

Long messages are used to
send and receive
system exclusive

(SYSEX) messages.

(..a bit special)

midiOutShortMsg

Overview of MMSYSTEM.DLL

LONG Messages

midilnPrepareHeader
midilnUnprepareHeader

midilnAddBuffer

SHORT Messages

MM_MIM_DATA
(Windows Message)

MIDIinput can be done with call-back or messages.
Call-back is next to impossible in VB.

Trapping Windows Messages in VB requires a special VBX.
(Like the “MessageBlaster” in

the VB\MSGBLAST directory on this CD-ROM)

Overview of MMSYSTEM.DLL

However with the
we can do a lot of things
as | soon will demonstrate
In a practical example.

midiOutPrepareHeader
midiOutUnprepareHeader

— C O

midiOutLongMsg midiOutShortMsg

By adding the definitions
contained in the file
WINMMSYS.TXT
that comes with VB
you can call the
MMSYSTEM.DLL
directly from your program.

WINMMSYS.TXT

WINMMSYS.TXT
Is quite big so | have made a
“MIDI only” version
called ViV MITDT TXT and
placed it in the
MMSYSTEM\VB_LIBS
directory on this CD-ROM.

MM_MIDI. TXT

To make things a bit easier
| have wrapped the more
important routines in the

MMSYSTEM.DLL
In VB code and placed them

in a VB module file
called MIDI_OUT.BAS
In the same directory.
MM_MIDILTXT

If you only call
MIDI_OUT.BAS
it is more practical to let this
module be self supplied
with definitions
so MIDI_ OUT.BAS
contains all necessary
definitions.

Some of the more common
MIDI commands
| have put in VB routines
and placed in a VB file called
MIDI_CMD.BAS
The file is in the
MMSYSTEM\VB LIBS
directory on the CD.

..but enough talking!
Let us start VB
and get to some code.

| will not go in detail the same way
as | did with the MCI.
| will assume that you know VB

and how to use it as a programming tool.

Microsoft Yisual Basic [design] -~

-_ §|[Edit Yiew PBRun Debug Options Window Help

New Project w2l [4)
L Open Project...] || Ir| | || | | 2 - 11401395 |3 s29S -'-I-'-IESI
aave Project
Save Project As... . :
H*“’EF it We have used File and Add File...
New MBI Form to include the
New Module MlDl_CMDBAS and MlDl_OUTBAS
Add File... to the project.
Remove File So now we can call all
Save File

this ready made functions.

Save File As...

Load Text...
Save Text..
Print...
Make EXE File...
= PROJECT1.MAK b

| Wi O | Yiew Code

59 FORM1.FEM main
£ MIDI_CMD _BAS
sz MIDI_DUT BAS

Microsoft Yisual Basic [design] -~
File Edit Yiew Hun Debug Options Window Help

' |E1|“£$||EF;||| | || Ir| | || | | | % T qqu04395 B S295xaus
=
E -Elh-% . .
Al Let us get a list of Output devices.
o We put on a
ale Listbox and a label
and call the
g routine from the
i | =]
|
.
: § FoRmiFRM___ |
Object: |Form *| Proc: |Load ¥
|
sub Form Load ()} +
Call midi listoutdevs(list1)
End Subl|
| +|
«| *

= Form1 vla

Devices

Yopetra Super Sapi FM Dnver
SB16 MIDI Out

On a machine with a SB16 card
and a external ROLAND sound module
this will look something like this:

If we pick the MIDI mapper
the output will go where the map direct it

The Voyetra will play on the internal FM
synth (so we can compare the sound)

and the SB16 will send the notes
directly to the external box.

To make the user choose the device to open,
we add code on the of the

Here we open the that the user selects
by sending the related that where
stored in the of the listbox by

the routine.

Object: |Listl

Sub List1 Click ()
Pim ® As Integer

midi out close
¥ = midi_out o
End Sub

pen{list1_.ItemData{list1.ListIndex})

-

h S R
A Flet Ltz L ‘
I e
IERN | Dovices:: iy
=15 o B
EH|EB Now we can add a button to test the connection
8 by sending a “note on” MIDI message to the device.
5=
-
B
Object: |Commandl *| Proc: |Click *
Sub Command1 _Click () T
| Call note_on()
End Sub
_ +|
1-. -I*I

Izt _zound list

OK so the note sounded
now lets try playing a different instrument.

If we load a with instrument names
we can send a MIDI message
each time the user clicks the listbox.

The CD contains a file named :
In the directory that we can use.

Here is the code to load the listbox.

— Y - -
Object: |[general) *| Proc: |hll_sound_list +
|
Sub fill sound list () +
Dim s As String
Open app-Path & For Input As #
Do While Mot EOF({1)
Line Input #1, =
1st sound list.AddItem s
Loop
Close #
End 3Sub
1 ad |
: — I R -
Object: |Form *! Proc: |Load ¥

sub Form Load ()}
Call midi listoutdews{list1)}
Call fill sound list
nd Sub

+1

+ +

- and here is the code to send the programchange.

This assumes that the name of the instrument

correlates with the position in the list box.

(So don't turn on sort...)

= FOHM1.FEM |-
Object: |lst_sound hst ¥*| Proc: |Chck ¥
|
Sub 1st sound list Click () +
| Call program_change(1st sound list.ListIndex)
End Sub
= Forml
e
- Play Hote C4
Devices S ounds
Microsoft MIDI Mapper A Piano 1
Yopetra Super Sapi FM Dnver A Piano 2
SB16 MIDI Dut A_Piano 3
E.Piano 1
E.Piano 2
E.Piano 3
E.Piano 4
Honkytonk
E. Organ 1
E. Organ 2

E. Organ 3

After some testing
(with organs)
you will put on a button to
turn off all sound

List1 Izt _zound list
= FOHM1.FEM -
Object: Command? *!| Proc: |Chck *

Sub Command2 Click ()
4ll sounds off
End Sub

-

Playing C4 all the time gets more that boring so
(if we don't have a keyboard (..music keyboard | meant))
we invent some windows way of playing notes

(Just to test the instrument sounds

Play Note C4 Ciinniiiniiiiniiiiiiiiiinn

List1 Izt _zound list

111]
an

A ||
scrollbar and a picturebox =

| [|==

E

(1)

Please note that the and

= P rti - .
— properties are set to 127 and 0
b_play “ScrolB ¥
e (the range of playable notes)
+
L 1 The property is set to 12
127 so that scrolling this way will scroll
=" .
___ 0 - In octaves.
MouzePointer 0 - Default
M ame zb_play
SmallChange 1
H [T ablndex 3
T LTt Teo ¥
Y R - (-
Object: |sb_play *| Proc: |Change *
]
sub sb_play Change () +
Static prev_note As Integer ° remember variable (static)
* Turn off previous note
Call note off(prev_note}
“ turn on this note
Call note_on(b _play.Ualue 3 " Max velocity
" save note as previous
prev _note = sb play.Ualue
|End Sub| |
| ad

== Properties v For the picturebox
Picturel PictureBox * the IS Set to O
127 and the Is set to 127
lovsepomter - Jeat so we can take the mouse y co-ordinate
Picture (o] and send directly to the
ScaleHeight — [127 ——— mi|
Scaleleft 1]
Scaletdode 0 - User el
ScaleTop 0 /
Scalehfidth 405
T ablndesx 4
Tab5Stop True
1T a0 al

= FORM1.FEM v |

End

Object: |Picturel *[Proc: [Mouselp *
Sub Picture1 _HouseDown (Button As Integer, Shift |+
Call note _on(y b
End Sub
+
+ -+
_ _ |
sub Picture1 HMouselp (Button As Integer, Shift Aq+

Call note_off({ 1))
sub

The final kick is to implement a
“mouse-bender”
from a picturebox !

It will draw a line that follows the mouse
when it is inside the box.

List1 Izt _zound list

sub Bender HouseMouve
Static last y value

* Remove previous line by overdrawing with inverted draw mode

" scale width se

bender.Line

Call bender(

" Draw new line

bender.Line

last y wvalue =y
End 5ub

{Button As Integer
As Single

t from 8 to 1
last y value

L L

Shift As Integer

last y value
Y} " scaleheight set to 8 to 16383

¥ As Sing+

-

= Properties M : = Properties -
_ Observe properties _
Bender FictureBox * Bender FictureBox *
G - [revert ! B - [revert !
Crraglcon [Fone) + LinkTopic +
Draghd ode 0 - M anual MougzePonter 0 - Default
Drawtode m M arne Bender
| [CrawSiyle 0-5Sohd B Ficture [Fiore]
Drawtafidth 1 + ScaleHeight 16383
' Scaleleft 0
ScaleMode 0- User
ScaleTop 1
Scaletfidth 1
T ablndex 9
I~ | |Tag +
Object: |Bender *| Proc: |MouseMove ¥ : .
_—

We have now managed to make a completely
useless application that demonstrates
a lot of basic MIDI messages
and the way to send them

Now you can start building your own
application with personal functionality.

Remember to check out the higher level
CoolTools.

for this point in the
MMSYSTEM\MMSYSI
Directory on this CD-ROM.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

