
How to get started with VB and MIDI
Hi!

My name is Gaute
I will guide you through
your first steps of using
Visual Basic to program

MIDI using the
MMSYSTEM.DLL

The graphic in this presentation will look best on a VGA (640x480) screen

To fully follow me in this presentation
it would be best if you where familiar with

MIDI messages and
the technique of calling DLL’s from VB.

If not
Read some VB documentation,

look for declare in the VB on-line help
and read about MIDI implementation in your

ROLAND owners manual.

anyway you will learn something.....

First we will talk a little theory
and then I will guide you through a simple

application to demonstrate some of the
commands and techniques.

MMSYSTEM.DLL is the low-level entry to the
Multimedia for Windows.

It contains routines for playing video, music
reading the joystick etc..

I will focus on the routines for MIDI only.

Since the routines are low-level you may find them
cumbersome to use

but they give us very good control.

MMSYSTEM.DLL
(MIDI subset)

Can be divided in to parts..

Overview of MMSYSTEM.DLL

MMSYSTEM.DLLMIDI IN

MIDI OUT

Overview of MMSYSTEM.DLL

MMSYSTEM.DLLMIDI IN
midiOutGetNumDevs
midiOutGetDevCaps

midiOutOpen
midiOutClose

midiOutGetErrorText

MIDI OUT
midiInGetNumDevs
midiInGetDevCaps

midiInOpen
midiInClose

midiInGetErrorText

Overview of MMSYSTEM.DLL

Both parts have routines to get;

number of installed devices
and capabilities of those devices

and
Opening and closing

of the devices.

MMSYSTEM.DLLMIDI IN
midiInStart
midiInStop
midiInReset

MIDI OUT

Overview of MMSYSTEM.DLL

MIDI IN
have special routines for

recording

I
N

O
U
T

LONG Messages

midiInPrepareHeader
midiInUnprepareHeader

midiInAddBuffer

midiOutPrepareHeader
midiOutUnprepareHeader

midiOutLongMsg

SHORT Messages

MM_MIM_DATA
(Windows Message)

midiOutShortMsg

Overview of MMSYSTEM.DLL

IN and OUT are both divided in dealing
with LONG and SHORT Messages

I
N

O
U
T

LONG Messages

midiInPrepareHeader
midiInUnprepareHeader

midiInAddBuffer

midiOutPrepareHeader
midiOutUnprepareHeader

midiOutLongMsg

SHORT Messages

MM_MIM_DATA
(Windows Message)

midiOutShortMsg

Overview of MMSYSTEM.DLL

Long messages are used to
send and receive
system exclusive

(SYSEX) messages.
(..a bit special)

I
N

O
U
T

LONG Messages

midiInPrepareHeader
midiInUnprepareHeader

midiInAddBuffer

midiOutPrepareHeader
midiOutUnprepareHeader

midiOutLongMsg

SHORT Messages

MM_MIM_DATA
(Windows Message)

midiOutShortMsg

Overview of MMSYSTEM.DLL

MIDI input can be done with call-back or messages.
Call-back is next to impossible in VB.

Trapping Windows Messages in VB requires a special VBX.
(Like the “MessageBlaster” in

the VB\MSGBLAST directory on this CD-ROM)

I
N

O
U
T

LONG Messages

midiInPrepareHeader
midiInUnprepareHeader

midiInAddBuffer

midiOutPrepareHeader
midiOutUnprepareHeader

midiOutLongMsg

SHORT Messages

MM_MIM_DATA
(Windows Message)

midiOutShortMsg

Overview of MMSYSTEM.DLL
However with the midiOutShortMsg

we can do a lot of things
as I soon will demonstrate

in a practical example.

By adding the definitions
contained in the file
WINMMSYS.TXT

that comes with VB
you can call the

MMSYSTEM.DLL
directly from your program.

MMSYSTEM.DLL

Your program

WINMMSYS.TXT

WINMMSYS.TXT
Is quite big so I have made a

“MIDI only” version
called MM_MIDI.TXT and

placed it in the
MMSYSTEM\VB_LIBS

directory on this CD-ROM.

MMSYSTEM.DLL

Your program

MM_MIDI.TXT

To make things a bit easier
I have wrapped the more
important routines in the

MMSYSTEM.DLL
in VB code and placed them

in a VB module file
called MIDI_OUT.BAS
in the same directory.

MMSYSTEM.DLL

MIDI_OUT.BAS

Your program

MM_MIDI.TXT

If you only call
MIDI_OUT.BAS

it is more practical to let this
module be self supplied

with definitions
so MIDI_OUT.BAS

contains all necessary
definitions.

MMSYSTEM.DLL

MIDI_OUT.BAS

definitions

Your program

Some of the more common
MIDI commands

I have put in VB routines
and placed in a VB file called

MIDI_CMD.BAS
The file is in the

MMSYSTEM\VB_LIBS
directory on the CD.

MMSYSTEM.DLL

MIDI_CMD.BAS

MIDI_OUT.BAS

Your program

..but enough talking!
Let us start VB

and get to some code.

I will not go in detail the same way
as I did with the MCI.

I will assume that you know VB
and how to use it as a programming tool.

We have used File and Add File...
to include the

MIDI_CMD.BAS and MIDI_OUT.BAS
to the project.

So now we can call all
this ready made functions.

Let us get a list of Output devices.
We put on a

Listbox and a label
and call the

midi_listoutdevs
routine from the form_load event.

On a machine with a SB16 card
and a external ROLAND sound module

this will look something like this:

If we pick the MIDI mapper
the output will go where the map direct it

The Voyetra will play on the internal FM
synth (so we can compare the sound)

and the SB16 will send the notes
directly to the external box.

To make the user choose the device to open,
we add code on the click event of the list box.

Here we open the device that the user selects
by sending the related device ID that where

stored in the ItemData of the listbox by
the midi_listoutdevs routine.

Now we can add a button to test the connection
by sending a “note on” MIDI message to the device.

OK so the note sounded
now lets try playing a different instrument.

If we load a listbox with instrument names
we can send a MIDI programchange message

each time the user clicks the listbox.

The CD contains a file named genmidi.txt,
in the mmsys1 directory that we can use.

Here is the code to load the listbox.

- and here is the code to send the programchange.

This assumes that the name of the instrument
correlates with the position in the list box.

(So don't turn on sort...)

After some testing
(with organs)

you will put on a button to
turn off all sound.....

Playing C4 all the time gets more that boring so
(if we don't have a keyboard (..music keyboard I meant))

we invent some windows way of playing notes
(Just to test the instrument sounds.....)

A
scrollbar and a picturebox

(!)

Please note that the max and min
properties are set to 127 and 0
(the range of playable notes)

The LargeChange property is set to 12
so that scrolling this way will scroll

in octaves.

For the picturebox
the ScaleTop is set to 0

and the ScaleHeight is set to 127
so we can take the mouse y co-ordinate

and send directly to the note on.

The final kick is to implement a
“mouse-bender”

from a picturebox !

It will draw a line that follows the mouse
when it is inside the box.

Observe properties
DrawMode
ScaleTop
ScaleLeft

ScaleHeight
ScaleWidth

The will find the source code
for this point in the

MMSYSTEM\MMSYS1
Directory on this CD-ROM.

We have now managed to make a completely
useless application that demonstrates

a lot of basic MIDI messages
and the way to send them

Now you can start building your own
application with personal functionality.

Remember to check out the higher level
CoolTools.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

